Selamat datang di sains chemisty... Tempat berbagi ilmu kimia with hanni.a1f08006@gmail.com

Hanni with bycle

main sepeda with my sister di pantai panjang BENGKULU

This is default featured post 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Selasa, 31 Mei 2011

Pengantar dan Aplikasi Asam Basa


PENGANTAR
Asam dan basa adalah dua golongan zat kimia yang sangat penting. Dalam kehidupan sehari-hari kita mengenal berbagai zat yang kita golongkan sebagai asam, misalnya asam cuka, asam sitrun, asam jawa, asam belimbing, jeruk, dan sebagainya. Demikian juga, kita mengenal berbagai zat yang kita golongkan sebagai basa, misalnya kapur sirih, kaustik soda, air sabun, dan air abu. Salah satu sifat basa adalah dapat melarutkan lemak; itulah sebabnya abu (abu gosok) digunakan untuk mencuci piring.

Dalam blog ini akan dipaparkan tentang pengertian asam dan basa serta sifat-sifatnya, cara menunjukkan asam dan basa, serta gambar dan video praktikum yang berhubungan dengan  asam dan basa. 

Aplikasi Asam dan Basa

Asam-basa merupakan salah satu sifat zat baik yang berbentuk larutan maupun non pelarut. Asam dan basa penting dalam proses kimia yang terjadi disekitar kita, mulai dari proses industry sampai proses biologi dalam tubuh makhluk hidup, mulai reaksi yang terjadi di laboratorium hingga reaksi yang terjadi di lingkungan sekitar.
Dalam industri besar ataupun home industry, banyak proses-proses produksinya atau kualitas produksinya sangat bergantung pada tingkat keasaman atau kebasaan mediumnya. Misalnya pada pembuatan tahu, kualitas pembentukan tahu (proses pengendapan) ditentukan keasaman larutan medianya.
Di dalam tubuh kita terdapat sistem yang sangat rumit yang secara ketat dikendalikan oleh keasaman darah. Ada deviasi sedikit saja tingkat keasaman darah dapat mengakibatkan fatal bahkan kematian, sebab darah menjadi malfungsi akibat tidak dapat mengikat oksigen hasil pernafasan.
Dengan demikian, kimia asam basa penting dipelajari disebabkan aplikasinya yang sangat dalam kehidupan sehari-hari.

Teori asam dan basa

Halaman ini menggambarkan teori asam dan basa Arrhenius, Bronsted-Lowry, dan Lewis, dan halaman ini juga menjelaskan hubungan antara ketiga teori asam dan basa tersebut. Halaman ini juga menjelaskan konsep pasangan konjugasi – asam dan basa konjugasinya, atau basa dan asam konjugasinya. Sumber : http://www.chem-is-try.org/materi_kimia/kimia_fisika1/kesetimbangan_asam_basa/teori_asam_dan_basa/

Teori asam dan basa Arrhenius


Teori
  • Asam adalah zat yang menghasilkan ion hidrogen dalam larutan.
  • Basa adalah zat yang menghasilkan ion hidroksida dalam larutan.
Penetralan terjadi karena ion hidrogen dan ion hidroksida bereaksi untuk menghasilkan air.


Pembatasan teori
Asam hidroklorida (asam klorida) dinetralkan oleh kedua larutan natrium hidroksida dan larutan amonia. Pada kedua kasus tersebut, kamu akan memperoleh larutan tak berwarna yang dapat kamu kristalisasi untuk mendapatkan garam berwarna putih – baik itu natrium klorida maupun amonium klorida.
Keduanya jelas merupakan reaksi yang sangat mirip. Persamaan lengkapnya adalah:


 
Pada kasus natrium hidroksida, ion hidrogen dari asam bereaksi dengan ion hidroksida dari natrium hidroksida – sejalan dengan teori Arrhenius.
Akan tetapi, pada kasus amonia, tidak muncul ion hidroksida sedikit pun!
anda bisa memahami hal ini dengan mengatakan bahwa amonia bereaksi dengan air yang melarutkan amonia tersebut untuk menghasilkan ion amonium dan ion hidroksida:


Reaksi ini merupakan reaksi reversibel, dan pada larutan amonia encer yang khas, sekitar 99% sisa amonia ada dalam bentuk molekul amonia. Meskipun demikian, pada reaksi tersebut terdapat ion hidroksida, dan kita dapat menyelipkan ion hidroksida ini ke dalam teori Arrhenius.
Akan tetapi, reaksi yang sama juga terjadi antara gas amonia dan gas hidrogen klorida.


Pada kasus ini, tidak terdapat ion hidrogen atau ion hidroksida dalam larutan – karena bukan merupakan suatu larutan. Teori Arrhenius tidak menghitung reaksi ini sebagai reaksi asam-basa, meskipun pada faktanya reaksi tersebut menghasilkan produk yang sama seperti ketika dua zat tersebut berada dalam larutan. Ini adalah sesuatu hal yang lucu!
Teori asam dan basa Bronsted-Lowry


Teori
  • Asam adalah donor proton (ion hidrogen).
  • Basa adalah akseptor proton (ion hidrogen).
Hubungan antara teori Bronsted-Lowry dan teori Arrhenius
Teori Bronsted-Lowry tidak berlawanan dengan teori Arrhenius – Teori Bronsted-Lowry merupakan perluasan teori Arrhenius.
Ion hidroksida tetap berlaku sebagai basa karena ion hidroksida menerima ion hidrogen dari asam dan membentuk air.
Asam menghasilkan ion hidrogen dalam larutan karena asam bereaksi dengan molekul air melalui pemberian sebuah proton pada molekul air.
Ketika gas hidrogen klorida dilarutkan dalam air untuk menghasilkan asam hidroklorida, molekul hidrogen klorida memberikan sebuah proton (sebuah ion hidrogen) ke molekul air. Ikatan koordinasi (kovalen dativ) terbentuk antara satu pasangan mandiri pada oksigen dan hidrogen dari HCl. Menghasilkan ion hidroksonium, H3O+.








Ketika asam yang terdapat dalam larutan bereaksi dengan basa, yang berfungsi sebagai asam sebenarnya adalah ion hidroksonium. Sebagai contoh, proton ditransferkan dari ion hidroksonium ke ion hidroksida untuk mendapatkan air.


 Tampilan elektron terluar, tetapi mengabaikan elektron pada bagian yang lebih dalam:
 







Adalah sesuatu hal yang penting untuk mengatakan bahwa meskipun anda berbicara tentang ion hidrogen dalam suatu larutan, H+(aq), sebenarnya anda sedang membicarakan ion hidroksonium.
Permasalahan hidrogen klorida / amonia
Hal ini bukanlah suatu masalah yang berlarut-larut dengan menggunakan teori Bronsted-Lowry. Apakah anda sedang membicarakan mengenai reaksi pada keadaan larutan ataupun pada keadaan gas, amonia adalah basa karena amonia menerima sebuah proton (sebuah ion hidrogen). Hidrogen menjadi tertarik ke pasangan mandiri pada nitrogen yang terdapat pada amonia melalui sebuah ikatan koordinasi.








Jika amonia berada dalam larutan, amonia menerima sebuah proton dari ion hidroksonium:

Jika reaksi terjadi pada keadaan gas, amonia menerima sebuah proton secara langsung dari hidrogen klorida:



Cara yang lain, amonia berlaku sebagai basa melalui penerimaan sebuah ion hidrogen dari asam.
Pasangan konjugasi
Ketika hidrogen klorida dilarutkan dalam air, hampir 100% hidrogen klorida bereaksi dengan air menghasilkan ion hidroksonium dan ion klorida. Hidrogen klorida adalah asam kuat, dan kita cenderung menuliskannya dalam reaksi satu arah:



Pada faktanya, reaksi antara HCl dan air adalah reversibel, tetapi hanya sampai pada tingkatan yang sangat kecil. Supaya menjadi bentuk yang lebih umum, asam dituliskan dengan HA, dan reaksi berlangsung reversibel.
Perhatikan reaksi ke arah depan:
  • HA adalah asam karena HA mendonasikan sebuah proton (ion hidrogen) ke air.
  • Air adalah basa karena air menerima sebuah proton dari HA.
Akan tetapi ada juga reaksi kebalikan antara ion hidroksonium dan ion A-:
  • H3O+ adalah asam karena H3O+ mendonasikan sebuah proton (ion hidrogen) ke ion A-.
  • Ion A- adalah basa karena A- menerima sebuah proton dari H3O+.
Reaksi reversibel mengandung dua asam dan dua basa. Kita dapat menganggapnya berpasangan, yang disebut pasangan konjugasi.
Ketika asam, HA, kehilangan sebuah proton asam tersebut membentuk sebuah basa A-. Ketika sebuah basa, A-, menerima kembali sebuah proton, basa tersebut kembali berubah bentuk menjadi asam, HA. Keduanya adalah pasangan konjugasi.
Anggota pasangan konjugasi berbeda antara satu dengan yang lain melalui kehadiran atau ketidakhadiran ion hidrogen yang dapat ditransferkan.
Jika anda berfikir mengenai HA sebagai asam, maka A- adalah sebagai basa konjugasinya.
Jika anda memperlakukan A- sebagai basa, maka HA adalah sebagai asam konjugasinya.
Air dan ion hidroksonium juga merupakan pasangan konjugasi. Memperlakukan air sebagai basa, ion hidroksonium adalah asam konjugasinya karena ion hidroksonium memiliki kelebihan ion hidrogen yang dapat diberikan lagi.
Memperlakukan ion hidroksonium sebagai asam, maka air adalah sebagai basa konjugasinya. Air dapat menerima kembali ion hidrogen untuk membentuk kembali ion hidroksonium.

Contoh yang kedua mengenai pasangan konjugasi
Berikut ini adalah reaksi antara amonia dan air yang telah kita lihat sebelumnya:


Hal pertama yang harus diperhatikan adalah forward reaction terlebih dahulu. Amonia adalah basa karena amonia menerima ion hidrogen dari air. Ion amonium adalah asam konjugasinya – ion amonium dapat melepaskan kembali ion hidrogen tersebut untuk membentuk kembali amonia.
Air berlaku sebagai asam, dan basa konjugasinya adalah ion hidroksida. Ion hidroksida dapat menerima ion hidrogen untuk membentuk air kembali.
Perhatikanlah hal ini pada tinjauan yang lain, ion amonium adalah asam, dan amonia adalah basa konjugasinya. Ion hidroksida adalah basa dan air adalah asam konjugasinya.

Zat amfoter
Anda mungkin memperhatikan (atau bahkan mungkin juga tidak memperhatikan!) bahwa salah satu dari dua contoh di atas, air berperilaku sebagai basa, tetapi di lain pihak air berperilaku sebagai asam.
Suatu zat yang dapat berperilaku baik sebagai asam atau sebagai basa digambarkan sebagai amfoter.
Teori asam dan basa Lewis
Teori ini memperluas pemahaman anda mengenai asam dan basa.
Teori
  • Asam adalah akseptor pasangan elektron.
  • Basa adalah donor pasangan elektron.

Hubungan antara teori Lewis dan teori Bronsted-Lowry

Basa Lewis
Hal yang paling mudah untuk melihat hubungan tersebut adalah dengan meninjau dengan tepat mengenai basa Bronsted-Lowry ketika basa Bronsted-Lowry menerima ion hidrogen. Tiga basa Bronsted-Lowry dapat kita lihat pada ion hidroksida, amonia dan air, dan ketianya bersifat khas.
Teori Bronsted-Lowry mengatakan bahwa ketiganya berperilaku sebagai basa karena ketiganya bergabung dengan ion hidrogen. Alasan ketiganya bergabung dengan ion hidrigen adalah karena ketiganya memiliki pasangan elektron mandiri – seperti yang dikatakan oleh Teori Lewis. Keduanya konsisten.
Jadi bagaimana Teori Lewis merupakan suatu tambahan pada konsep basa? Saat ini belum – hal ini akan terlihat ketika kita meninjaunya dalam sudut pandang yang berbeda.
Tetapi bagaimana dengan reaksi yang sama mengenai amonia dan air, sebagai contohnya? Pada teori Lewis, tiap reaksi yang menggunakan amonia dan air menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi yang akan terhitung selama keduanya berperilaku sebagai basa.
Berikut ini reaksi yang akan anda temukan pada halaman yang berhubungan dengan ikatan koordinasi. Amonia bereaksi dengan BF3 melalui penggunaan pasangan elektron mandiri yang dimilikinya untuk membentuk ikatan koordinasi dengan orbital kosong pada boron.
Sepanjang menyangkut amonia, amonia menjadi sama persis seperti ketika amonia bereaksi dengan sebuah ion hidrogen – amonia menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi. Jika anda memperlakukannya sebagai basa pada suatu kasus, hal ini akan berlaku juga pada kasus yang lain.
Asam Lewis
Asam Lewis adalah akseptor pasangan elektron. Pada contoh sebelumnya, BF3 berperilaku sebagai asam Lewis melalui penerimaan pasangan elektron mandiri milik nitrogen. Pada teori Bronsted-Lowry, BF3 tidak sedikitpun disinggung menganai keasamannya.
Inilah tambahan mengenai istilah asam dari pengertian yang sudah biasa digunakan.
Bagaimana dengan reaksi asam basa yang lebih pasti – seperti, sebagai contoh, reaksi antara amonia dan gas hidrogen klorida?
Pastinya adalah penerimaan pasangan elektron mandiri pada nitrogen. Buku teks sering kali menuliskan hal ini seperti jika amonia mendonasikan pasangan elektron mandiri yang dimilikinya pada ion hidrogen – proton sederhana dengan tidak adanya elektron disekelilingnya.
Ini adalah sesuatu hal yang menyesatkan! anda tidak selalu memperoleh ion hidrogen yang bebas pada sistem kimia. Ion hidogen sangat reaktif dan selalu tertarik pada yang lain. Tidak terdapat ion hidrogen yang tidak bergabung dalam HCl.
Tidak terdapat orbital kosong pada HCl yang dapat menerima pasangan elektron. Mengapa, kemudian, HCl adalah suatu asam Lewis?
Klor lebih elektronegatif dibandingkan dengan hidrogen, dan hal ini berarti bahwa hidrogen klorida akan menjadi molekul polar. Elektron pada ikatan hidrogen-klor akan tertarik ke sisi klor, menghasilkan hidrogen yang bersifat sedikit positif dan klor sedikit negatif.
Pasangan elektron mandiri pada nitrogen yang terdapat pada molekul amonia tertarik ke arah atom hidrogen yang sedikit positif pada HCl. Setelah pasangan elektron mandiri milik nitrogen mendekat pada atom hidrogen, elektron pada ikatan hidrogen-klor tetap akan menolak ke arah klor.
Akhirnya, ikatan koordinasi terbentuk antara nitrogen dan hidrogen, dan klor terputus keluar sebagai ion klorida.
Hal ini sangat baik ditunjukkan dengan notasi "panah melengkung" seperti yang sering digunakan dalam mekanisme reaksi organik.

DAFTAR PUSTAKA
Purba, Michael. 2006. Kimia  untuk SMA Kelas XI Semester 1. Jakarta: Erlangga
Harnanto, Ari dan Ruminten. 2009. Kimia 2Untuk SMA/MA Kelas XI. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional
http://www.chem-is-try.org/materi_kimia/kimia_fisika1/kesetimbangan_asam_basa/teori_asam_dan_basa/

MACROMEDIA FLASH ASAM DAN BASA

UNTUK MELIHAT MACROMEDIA FLASH TENTANG LARUTAN ASAM DAN BASA, SILAKAN KLIK "READ MORE"
Macromedia flash ini berisi SK, KD, Tujuan pembelajaran, Materi, dan Evaluasi


Jumat, 27 Mei 2011

Identifikasi Asam dan Basa

Menunjuk Asam dan Basa 

          Berkaitan dengan sifat asam dan basa, larutan dapat dibedakan ke dalam tiga golongan, yaitu bersifat asam, bersifat basa, atau bersifat netral (tidak asam dan tidak basa).Lalu bagaimanakah cara menentukan suatu larutan atau bahan yang bersifat asam, basa, atau netral tersebut ? Apakah kita harus mencicipinya ? Sangatlah tidak bijaksana jika kita menentukan asam, basa, atau netral dengan cara mencicipi. Karena banyak terdapat zat-zat kimia yang sifatnya berbahaya jika termakan atau terkena langsung pada kulit. Oleh karena itu, kita butuh suatu indikator asam basa untuk menentukannya. Di bawah ini terdapat beberapa contoh bahan yang bersifat asam basa yang ada di sekitar kita.


                                               Gambar 1. Contoh asam dan basa

       Sifat larutan tersebut dapat ditunjukkan dengan menggunakan indikator asam-basa, yaitu zat-zat warna yang akan menghasilkan warna berbeda dalam larutan asam dan basa. Misalnya, lakmus merah dan lakmus biru. 

IDENTIFIKASI LARUTAN ASAM DAN BASA

Banyak sekali larutan di sekitar kita, baik yang bersifat asam, basa, maupun netral. Tahukah kamu bagaimana cara menentukan sifat asam dan basa larutan secara tepat?
Untuk menentukan suatu larutan bersifat asam atau basa dapat dilakukan dengan menggunakan indikator. Indikator yang dapat digunakan adalah indikator asam basa. Indikator adalah zat-zat yang menunjukkan indikasi berbeda dalam larutan asam, basa, dan netral. Cara menentukan senyawa bersifat asam, basa, atau netral dapat menggunakan kertas lakmus dan larutan indikator atau indikator alami. Berikut adalah beberapa cara menguji sifat larutan:
1. Identifikasi dengan Kertas Lakmus (Indikator Warna)
Yang pertama menggunakan indikator warna, yang akan menunjukkan sifat suatu larutan dengan perubahan warna yang terjadi.
Warna kertas lakmus dalam larutan asam, larutan basa dan larutan bersifat netral berbeda-beda. Ada dua macam kertas lakmus,yaitu lakmus merah dan lakmus biru. Sifat dari masing-masing kertas lakmus tersebut adalah sebagai berikut. a. Lakmus merah
Lakmus merah dalam larutan asam berwarna merah dan dalam larutan
basa berwarna biru.
b. Lakmus biru
Lakmus biru dalam larutan asam berwarna merah dan dalam larutan
basa berwarna biru.
c. Lakmus merah maupun biru dalam larutan netral tidak berubah warna. 
 
2. Identifikasi Larutan Asam, Basa, dan Netral Menggunakan Indikator Alami
Percobaan yang dapat kamu lakukan adalah mengidentifikasi suatu larutan bersifat asam, basa atau netral dengan menggunakan kertas lakmus. Adakah cara lain untuk mengidentifikasi suatu larutan? Ada beberapa cara yang dapat kamu lakukan sendiri di rumah, yaitu dengan menggunakan indikator alami. Berbagai bunga yang berwarna atau tumbuhan, seperti daun, mahkota bunga, kunyit, kulit manggis, dan kubis ungu dapat digunakan sebagai indikator asam basa. Ekstrak atau sari dari bahan-bahan ini dapat menunjukkan warna yang berbeda dalam larutan asam basa.
Sebagai contoh, ambillah kulit manggis, tumbuklah sampai halus dan campur dengan sedikit air. Warna kulit manggis adalah ungu (dalam keadaan netral). Jika ekstrak kulit manggis dibagi dua dan masing-masing diteteskan larutan asam dan basa, maka dalam larutan asam terjadi perubahan warna dari ungu menjadi cokelat kemerahan. Larutan basa yang diteteskan akan mengubah warna dari ungu menjadi biru kehitaman.


Menentukan pH Suatu Larutan
pH merupakan suatu parameter yang digunakan untuk menyatakan tingkat keasaman larutan. Larutan asam memiliki pH kurang dari 7, larutan basa memiliki pH lebih dari 7, sedangkan larutan netral memiliki pH=7. pH
Derajat keasaman (pH) suatu larutan dapat ditentukan menggunakan indikator universal, indikator stick, larutan indikator, dan pH meter.

a) Indikator Universal

Indikator universal merupakan campuran dari bermacam-macam indikator yang dapat menunjukkan pH suatu larutan dari perubahan warnanya. Indikator universal ada dua macam yaitu indikator yang berupa kertas dan larutan. 


b. Indikator Kertas (Indikator Stick)

                                      

Indikator kertas berupa kertas serap dan tiap kotak kemasan indikator jenis ini dilengkapi dengan peta warna. Penggunaannya sangat sederhana, sehelai indikator dicelupkan ke dalam larutan yang akan diukur pH-nya. Kemudian dibandingkan dengan peta warna yang tersedia.


c. Larutan Indikator

Salah satu contoh indikator universal jenis larutan adalah larutan metil jingga (Metil Orange = MO). Pada pH kurang dari 6 larutan ini berwarna jingga, sedangkan pada pH lebih dari 7 warnanya menjadi kuning. Contoh indikator cair lainnya adalah indikator fenolftalin (Phenolphtalein = pp). pH di bawah 8, fenolftalin tidak berwarna, dan akan berwarna merah anggur apabila pH larutan di atas 10.

Warna Indikator Metil Jingga dlm Larutan dngn pH 2, 7, dan 11
Sumber Gambar: Suroso AY, Anna P, Kordiyawarman Ensiklopedia Sains dan Kehidupan (2003)

d. pH Meter
Pengujian sifat larutan asam basa dapat juga menggunakan pH meter. Penggunaan alat ini dengan cara dicelupkan pada larutan yang akan diuji, pada pH meter akan muncul angka skala yang menunjukkan pH larutan.


                                                                 Gambar 2. pH-meter
Pengujian sifat larutan asam basa dapat juga menggunakan pH meter. Penggunaan alat ini dengan cara dicelupkan pada larutan yang akan diuji, pada pH meter akan muncul angka skala yang menunjukkan pH larutan.

VIDEO DAN ANIMASI 
Untuk mengetahui suatu larutan bersifat asam atau basa dilakukan identifikasi asam basa, salah satu caranya adalah menggunakan kertas lakmus. Kertas lakmus terdiri dari 2 warna, yaitu lakmus merah dan biru. Untuk melihat simulasi identifikasi asam basa, silakan  klik link di bawah ini :


TUGAS DISKUSI : 
1. Apa yang kalian ketahui tentang asam dan basa?
2. Apa saja contoh asam dan basa yang ada di sekitar kita dan bagaimana cara kalian
    mengidentifikasi bahwa tergolong asam atau basa?
3. Jelaskan pengertian asam dan basa menurut Arrhenius, Bronsted LOwry, dan Lewis!

Twitter Delicious Facebook Digg Stumbleupon Favorites More